uvarpro.Rd
Variable Selection in Unsupervised Problems using UVarPro
uvarpro(data,
method = c("auto", "unsupv", "rnd"),
ntree = 200, nodesize = NULL,
max.rules.tree = 50, max.tree = 200,
papply = mclapply, verbose = FALSE, seed = NULL,
...)
Data frame containing the unsupervised data.
Type of forest used. Options are "auto"
(auto-encoder), "unsupv"
(unsupervised analysis), and "rnd"
(pure random forest).
Number of trees to grow.
Minimum terminal node size. If not specified, an internal function selects an appropriate value based on sample size and dimension.
Maximum number of rules per tree.
Maximum number of trees used to extract rules.
Parallel apply method; typically mclapply
or lapply
.
Print verbose output?
Seed for reproducibility.
Additional arguments passed to rfsrc
.
UVarPro performs unsupervised variable selection by applying the
VarPro framework to random forests trained on unlabeled data. The
forest construction is governed by the method
argument. By
default, method = "auto"
fits a random forest autoencoder,
which regresses each selected variable on itself, a specialized form
of multivariate forest modeling. Alternatives include "unsupv"
,
which uses pseudo-responses and multivariate splits to build an
unsupervised forest (Tang and Ishwaran, 2017), and "rnd"
, which
uses completely random splits. For large datasets, the autoencoder may
be slower, while the "unsupv"
and "rnd"
options are
typically more computationally efficient.
Variable importance is measured using an entropy-based criterion that reflects the overall variance explained by each feature. Users may also supply custom entropy functions to define alternative importance metrics. See the examples for details.
A uvarpro object.
Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and Data Mining, 10:363-377.
## ------------------------------------------------------------
## boston housing: default call
## ------------------------------------------------------------
data(BostonHousing, package = "mlbench")
## default call
o <- uvarpro(BostonHousing)
print(importance(o))
## ------------------------------------------------------------
## boston housing: using method="unsupv"
## ------------------------------------------------------------
data(BostonHousing, package = "mlbench")
## unsupervised splitting
o <- uvarpro(BostonHousing, method = "unsupv")
print(importance(o))
# \donttest{
## ------------------------------------------------------------
## boston housing: illustrates hot-encoding
## ------------------------------------------------------------
## load the data
data(BostonHousing, package = "mlbench")
## convert some of the features to factors
Boston <- BostonHousing
Boston$zn <- factor(Boston$zn)
Boston$chas <- factor(Boston$chas)
Boston$lstat <- factor(round(0.2 * Boston$lstat))
Boston$nox <- factor(round(20 * Boston$nox))
Boston$rm <- factor(round(Boston$rm))
## call unsupervised varpro and print importance
print(importance(o <- uvarpro(Boston)))
## get top variables
get.topvars(o)
## map importance values back to original features
print(get.orgvimp(o))
## same as above ... but for all variables
print(get.orgvimp(o, pretty = FALSE))
## ------------------------------------------------------------
## latent variable simulation
## ------------------------------------------------------------
n <- 1000
w <- rnorm(n)
x <- rnorm(n)
y <- rnorm(n)
z <- rnorm(n)
ei <- matrix(rnorm(n * 20, sd = sqrt(.1)), ncol = 20)
e21 <- rnorm(n, sd = sqrt(.4))
e22 <- rnorm(n, sd = sqrt(.4))
wi <- w + ei[, 1:5]
xi <- x + ei[, 6:10]
yi <- y + ei[, 11:15]
zi <- z + ei[, 16:20]
h1 <- w + x + e21
h2 <- y + z + e22
dta <- data.frame(w=w,wi=wi,x=x,xi=xi,y=y,yi=yi,z=z,zi=zi,h1=h1,h2=h2)
## default call
print(importance(uvarpro(dta)))
## ------------------------------------------------------------
## glass (remove outcome)
## ------------------------------------------------------------
data(Glass, package = "mlbench")
## remove the outcome
Glass$Type <- NULL
## get importance
o <- uvarpro(Glass)
print(importance(o))
## compare to PCA
(biplot(prcomp(o$x, scale = TRUE)))
## ------------------------------------------------------------
## largish data set: illustrates various options to speed up calculations
## ------------------------------------------------------------
## first we roughly impute the data
data(housing, package = "randomForestSRC")
## to speed up analysis, convert all factors to real values
housing2 <- randomForestSRC:::get.na.roughfix(housing)
housing2 <- data.frame(data.matrix(housing2))
## use fewer trees and bigger nodesize
print(importance(uvarpro(housing2, ntree = 50, nodesize = 150)))
## ------------------------------------------------------------
## custom importance
## OPTION 1: use hidden entropy option
## ------------------------------------------------------------
my.entropy <- function(xC, xO, ...) {
## xC x feature data from complementary region
## xO x feature data from original region
## ... used to pass aditional options (required)
## custom importance value
wss <- mean(apply(rbind(xO, xC), 2, sd, na.rm = TRUE))
bss <- (mean(apply(xC, 2, sd, na.rm = TRUE)) +
mean(apply(xO, 2, sd, na.rm = TRUE)))
imp <- 0.5 * bss / wss
## entropy value must contain complementary and original membership
entropy <- list(comp = list(...)$compMembership,
oob = list(...)$oobMembership)
## return importance and in the second slot the entropy list
list(imp = imp, entropy)
}
o <- uvarpro(BostonHousing, entropy=my.entropy)
print(importance(o))
## ------------------------------------------------------------
## custom importance
## OPTION 2: direct importance without hidden entropy option
## ------------------------------------------------------------
o <- uvarpro(BostonHousing, ntree=3, max.rules.tree=10)
## convert original/release region into two-class problem
## define importance as the lasso beta values
## For faster performance on Unix systems, consider using:
## library(parallel)
## imp <- do.call(rbind, mclapply(seq_along(o$entropy), function(j) { ... }))
imp <- do.call(rbind, lapply(seq_along(o$entropy), function(j) {
rO <- do.call(rbind, lapply(o$entropy[[j]], function(r) {
xC <- o$x[r[[1]],names(o$entropy),drop=FALSE]
xO <- o$x[r[[2]],names(o$entropy),drop=FALSE]
y <- factor(c(rep(0, nrow(xC)), rep(1, nrow(xO))))
x <- rbind(xC, xO)
x <- x[, colnames(x) != names(o$entropy)[j]]
fit <- tryCatch(
suppressWarnings(glmnet::cv.glmnet(as.matrix(x), y, family = "binomial")),
error = function(e) NULL
)
if (!is.null(fit)) {
beta <- setNames(rep(0, length(o$entropy)), names(o$entropy))
bhat <- abs(coef(fit)[-1, 1])
beta[names(bhat)] <- bhat
beta
} else {
NULL
}
}))
if (!is.null(rO)) {
val <- colMeans(rO, na.rm = TRUE)
names(val) <- colnames(rO)
return(val)
} else {
return(NULL)
}
}) |> setNames(names(o$entropy)))
print(imp)
## ------------------------------------------------------------
## custom importance
## OPTION 3: direct importance using built in lasso beta function
## ------------------------------------------------------------
o <- uvarpro(BostonHousing, ntree=3, max.rules.tree=10)
print((beta <- get.beta.entropy(o)))
## bonus: display s-dependent graph
sdependent(beta)
# }