Variable Selection in Unsupervised Problems using UVarPro

uvarpro(data,
        method = c("auto", "unsupv", "rnd"),
        ntree = 200, nodesize = NULL,
        max.rules.tree = 50, max.tree = 200,
        papply = mclapply, verbose = FALSE, seed = NULL,
        ...)

Arguments

data

Data frame containing the unsupervised data.

method

Type of forest used. Options are "auto" (auto-encoder), "unsupv" (unsupervised analysis), and "rnd" (pure random forest).

ntree

Number of trees to grow.

nodesize

Minimum terminal node size. If not specified, an internal function selects an appropriate value based on sample size and dimension.

max.rules.tree

Maximum number of rules per tree.

max.tree

Maximum number of trees used to extract rules.

papply

Parallel apply method; typically mclapply or lapply.

verbose

Print verbose output?

seed

Seed for reproducibility.

...

Additional arguments passed to rfsrc.

Details

UVarPro performs unsupervised variable selection by applying the VarPro framework to random forests trained on unlabeled data. The forest construction is governed by the method argument. By default, method = "auto" fits a random forest autoencoder, which regresses each selected variable on itself, a specialized form of multivariate forest modeling. Alternatives include "unsupv", which uses pseudo-responses and multivariate splits to build an unsupervised forest (Tang and Ishwaran, 2017), and "rnd", which uses completely random splits. For large datasets, the autoencoder may be slower, while the "unsupv" and "rnd" options are typically more computationally efficient.

Variable importance is measured using an entropy-based criterion that reflects the overall variance explained by each feature. Users may also supply custom entropy functions to define alternative importance metrics. See the examples for details.

Value

A uvarpro object.

Author

Min Lu and Hemant Ishwaran

References

Tang F. and Ishwaran H. (2017). Random forest missing data algorithms. Statistical Analysis and Data Mining, 10:363-377.

See also

Examples

## ------------------------------------------------------------
## boston housing: default call
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")

## default call
o <- uvarpro(BostonHousing)
print(importance(o))

## ------------------------------------------------------------
## boston housing: using method="unsupv"
## ------------------------------------------------------------

data(BostonHousing, package = "mlbench")

## unsupervised splitting 
o <- uvarpro(BostonHousing, method = "unsupv")
print(importance(o))

# \donttest{

## ------------------------------------------------------------
## boston housing: illustrates hot-encoding
## ------------------------------------------------------------

## load the data
data(BostonHousing, package = "mlbench")

## convert some of the features to factors
Boston <- BostonHousing
Boston$zn <- factor(Boston$zn)
Boston$chas <- factor(Boston$chas)
Boston$lstat <- factor(round(0.2 * Boston$lstat))
Boston$nox <- factor(round(20 * Boston$nox))
Boston$rm <- factor(round(Boston$rm))

## call unsupervised varpro and print importance
print(importance(o <- uvarpro(Boston)))

## get top variables
get.topvars(o)

## map importance values back to original features
print(get.orgvimp(o))

## same as above ... but for all variables
print(get.orgvimp(o, pretty = FALSE))


## ------------------------------------------------------------
## latent variable simulation
## ------------------------------------------------------------

n <- 1000
w <- rnorm(n)
x <- rnorm(n)
y <- rnorm(n)
z <- rnorm(n)
ei <- matrix(rnorm(n * 20, sd = sqrt(.1)), ncol = 20)
e21 <- rnorm(n, sd = sqrt(.4))
e22 <- rnorm(n, sd = sqrt(.4))
wi <- w + ei[, 1:5]
xi <- x + ei[, 6:10]
yi <- y + ei[, 11:15]
zi <- z + ei[, 16:20]
h1 <- w + x + e21
h2 <- y + z + e22
dta <- data.frame(w=w,wi=wi,x=x,xi=xi,y=y,yi=yi,z=z,zi=zi,h1=h1,h2=h2)

## default call
print(importance(uvarpro(dta)))


## ------------------------------------------------------------
## glass (remove outcome)
## ------------------------------------------------------------

data(Glass, package = "mlbench")

## remove the outcome
Glass$Type <- NULL

## get importance
o <- uvarpro(Glass)
print(importance(o))

## compare to PCA
(biplot(prcomp(o$x, scale = TRUE)))

## ------------------------------------------------------------
## largish data set: illustrates various options to speed up calculations
## ------------------------------------------------------------

## first we roughly impute the data
data(housing, package = "randomForestSRC")

## to speed up analysis, convert all factors to real values
housing2 <- randomForestSRC:::get.na.roughfix(housing)
housing2 <- data.frame(data.matrix(housing2))

## use fewer trees and bigger nodesize
print(importance(uvarpro(housing2, ntree = 50, nodesize = 150)))

## ------------------------------------------------------------
##  custom importance
##  OPTION 1: use hidden entropy option
## ------------------------------------------------------------

my.entropy <- function(xC, xO, ...) {

  ## xC     x feature data from complementary region
  ## xO     x feature data from original region
  ## ...    used to pass aditional options (required)
 
  ## custom importance value
  wss <- mean(apply(rbind(xO, xC), 2, sd, na.rm = TRUE))
  bss <- (mean(apply(xC, 2, sd, na.rm = TRUE)) +
              mean(apply(xO, 2, sd, na.rm = TRUE)))
  imp <- 0.5 * bss / wss
  
  ## entropy value must contain complementary and original membership
  entropy <- list(comp = list(...)$compMembership,
                  oob = list(...)$oobMembership)

  ## return importance and in the second slot the entropy list 
  list(imp = imp, entropy)

}

o <- uvarpro(BostonHousing, entropy=my.entropy)
print(importance(o))


## ------------------------------------------------------------
##  custom importance
##  OPTION 2: direct importance without hidden entropy option
## ------------------------------------------------------------

o <- uvarpro(BostonHousing, ntree=3, max.rules.tree=10)

## convert original/release region into two-class problem
## define importance as the lasso beta values 

## For faster performance on Unix systems, consider using:
## library(parallel)
## imp <- do.call(rbind, mclapply(seq_along(o$entropy), function(j) { ... }))

imp <- do.call(rbind, lapply(seq_along(o$entropy), function(j) {
  rO <- do.call(rbind, lapply(o$entropy[[j]], function(r) {
    xC <- o$x[r[[1]],names(o$entropy),drop=FALSE]
    xO <- o$x[r[[2]],names(o$entropy),drop=FALSE]
    y <- factor(c(rep(0, nrow(xC)), rep(1, nrow(xO))))
    x <- rbind(xC, xO)
    x <- x[, colnames(x) != names(o$entropy)[j]]
    fit <- tryCatch(
      suppressWarnings(glmnet::cv.glmnet(as.matrix(x), y, family = "binomial")),
      error = function(e) NULL
    )
    if (!is.null(fit)) {
      beta <- setNames(rep(0, length(o$entropy)), names(o$entropy))
      bhat <- abs(coef(fit)[-1, 1])
      beta[names(bhat)] <- bhat
      beta
    } else {
      NULL
    }
  }))
  if (!is.null(rO)) {
    val <- colMeans(rO, na.rm = TRUE)
    names(val) <- colnames(rO)
    return(val)
  } else {
    return(NULL)
  }
}) |> setNames(names(o$entropy)))

print(imp)


## ------------------------------------------------------------
##  custom importance
##  OPTION 3: direct importance using built in lasso beta function
## ------------------------------------------------------------

o <- uvarpro(BostonHousing, ntree=3, max.rules.tree=10)
print((beta <- get.beta.entropy(o)))

## bonus: display s-dependent graph
sdependent(beta)

# }